\(\int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx\) [1417]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 37, antiderivative size = 611 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=-\frac {a \sqrt {d} g^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}+\frac {a \sqrt {d} g^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}-\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {a \sqrt {d} g^{3/2} \log \left (\sqrt {d}-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b^2 f}-\frac {a \sqrt {d} g^{3/2} \log \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b^2 f}+\frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {d g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{2 b f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \]

[Out]

-1/2*a*g^(3/2)*arctan(1-2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/d^(1/2)/(g*cos(f*x+e))^(1/2))*d^(1/2)/b^2/f*2^(1/
2)+1/2*a*g^(3/2)*arctan(1+2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/d^(1/2)/(g*cos(f*x+e))^(1/2))*d^(1/2)/b^2/f*2^(
1/2)+1/4*a*g^(3/2)*ln(d^(1/2)-2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/(g*cos(f*x+e))^(1/2)+d^(1/2)*tan(f*x+e))*d^
(1/2)/b^2/f*2^(1/2)-1/4*a*g^(3/2)*ln(d^(1/2)+2^(1/2)*g^(1/2)*(d*sin(f*x+e))^(1/2)/(g*cos(f*x+e))^(1/2)+d^(1/2)
*tan(f*x+e))*d^(1/2)/b^2/f*2^(1/2)-2*g^2*EllipticPi((d*sin(f*x+e))^(1/2)/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b-(-
a^2+b^2)^(1/2)),I)*2^(1/2)*(-a^2+b^2)^(1/2)*d^(1/2)*cos(f*x+e)^(1/2)/b^2/f/(g*cos(f*x+e))^(1/2)+2*g^2*Elliptic
Pi((d*sin(f*x+e))^(1/2)/d^(1/2)/(1+cos(f*x+e))^(1/2),-a/(b+(-a^2+b^2)^(1/2)),I)*2^(1/2)*(-a^2+b^2)^(1/2)*d^(1/
2)*cos(f*x+e)^(1/2)/b^2/f/(g*cos(f*x+e))^(1/2)+g*(g*cos(f*x+e))^(1/2)*(d*sin(f*x+e))^(1/2)/b/f+1/2*d*g^2*(sin(
e+1/4*Pi+f*x)^2)^(1/2)/sin(e+1/4*Pi+f*x)*EllipticF(cos(e+1/4*Pi+f*x),2^(1/2))*sin(2*f*x+2*e)^(1/2)/b/f/(g*cos(
f*x+e))^(1/2)/(d*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 611, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.405, Rules used = {2980, 2917, 2654, 303, 1176, 631, 210, 1179, 642, 2648, 2653, 2720, 2987, 2986, 1232} \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=-\frac {2 \sqrt {2} \sqrt {d} g^2 \sqrt {b^2-a^2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {d} g^2 \sqrt {b^2-a^2} \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {b^2-a^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {\cos (e+f x)+1}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}-\frac {a \sqrt {d} g^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}+\frac {a \sqrt {d} g^{3/2} \arctan \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}+1\right )}{\sqrt {2} b^2 f}+\frac {a \sqrt {d} g^{3/2} \log \left (-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)+\sqrt {d}\right )}{2 \sqrt {2} b^2 f}-\frac {a \sqrt {d} g^{3/2} \log \left (\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)+\sqrt {d}\right )}{2 \sqrt {2} b^2 f}-\frac {d g^2 \sqrt {\sin (2 e+2 f x)} \operatorname {EllipticF}\left (e+f x-\frac {\pi }{4},2\right )}{2 b f \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}+\frac {g \sqrt {d \sin (e+f x)} \sqrt {g \cos (e+f x)}}{b f} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]])/(a + b*Sin[e + f*x]),x]

[Out]

-((a*Sqrt[d]*g^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/(Sqrt[d]*Sqrt[g*Cos[e + f*x]])])/(Sqrt[
2]*b^2*f)) + (a*Sqrt[d]*g^(3/2)*ArcTan[1 + (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/(Sqrt[d]*Sqrt[g*Cos[e + f*x]
])])/(Sqrt[2]*b^2*f) - (2*Sqrt[2]*Sqrt[-a^2 + b^2]*Sqrt[d]*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[-(a/(b - Sqrt[-a^
2 + b^2])), ArcSin[Sqrt[d*Sin[e + f*x]]/(Sqrt[d]*Sqrt[1 + Cos[e + f*x]])], -1])/(b^2*f*Sqrt[g*Cos[e + f*x]]) +
 (2*Sqrt[2]*Sqrt[-a^2 + b^2]*Sqrt[d]*g^2*Sqrt[Cos[e + f*x]]*EllipticPi[-(a/(b + Sqrt[-a^2 + b^2])), ArcSin[Sqr
t[d*Sin[e + f*x]]/(Sqrt[d]*Sqrt[1 + Cos[e + f*x]])], -1])/(b^2*f*Sqrt[g*Cos[e + f*x]]) + (a*Sqrt[d]*g^(3/2)*Lo
g[Sqrt[d] - (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/Sqrt[g*Cos[e + f*x]] + Sqrt[d]*Tan[e + f*x]])/(2*Sqrt[2]*b^
2*f) - (a*Sqrt[d]*g^(3/2)*Log[Sqrt[d] + (Sqrt[2]*Sqrt[g]*Sqrt[d*Sin[e + f*x]])/Sqrt[g*Cos[e + f*x]] + Sqrt[d]*
Tan[e + f*x]])/(2*Sqrt[2]*b^2*f) + (g*Sqrt[g*Cos[e + f*x]]*Sqrt[d*Sin[e + f*x]])/(b*f) - (d*g^2*EllipticF[e -
Pi/4 + f*x, 2]*Sqrt[Sin[2*e + 2*f*x]])/(2*b*f*Sqrt[g*Cos[e + f*x]]*Sqrt[d*Sin[e + f*x]])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1232

Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]

Rule 2648

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*(b*Cos[e
 + f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 1)/(b*f*(m + n))), x] + Dist[a^2*((m - 1)/(m + n)), Int[(b*Cos[e + f*x
])^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[
2*m, 2*n]

Rule 2653

Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]), Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]

Rule 2654

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{k = Denomina
tor[m]}, Dist[k*a*(b/f), Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos
[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rule 2980

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Dist[g^2/b^2, Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n*(a - b*Sin[e + f*x]), x],
 x] - Dist[g^2*((a^2 - b^2)/b^2), Int[(g*Cos[e + f*x])^(p - 2)*((d*Sin[e + f*x])^n/(a + b*Sin[e + f*x])), x],
x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1]

Rule 2986

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Dist[2*Sqrt[2]*d*((b + q)/(f*q)), Subst[Int[1/((d*(b + q) + a*x^2
)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - Dist[2*Sqrt[2]*d*((b - q)/(f*q
)), Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]],
x]] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 2987

Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(
x_)])), x_Symbol] :> Dist[Sqrt[Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]], Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x]
]*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {g^2 \int \frac {\sqrt {d \sin (e+f x)} (a-b \sin (e+f x))}{\sqrt {g \cos (e+f x)}} \, dx}{b^2}-\frac {\left (\left (a^2-b^2\right ) g^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)} (a+b \sin (e+f x))} \, dx}{b^2} \\ & = \frac {\left (a g^2\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}} \, dx}{b^2}-\frac {g^2 \int \frac {(d \sin (e+f x))^{3/2}}{\sqrt {g \cos (e+f x)}} \, dx}{b d}-\frac {\left (\left (a^2-b^2\right ) g^2 \sqrt {\cos (e+f x)}\right ) \int \frac {\sqrt {d \sin (e+f x)}}{\sqrt {\cos (e+f x)} (a+b \sin (e+f x))} \, dx}{b^2 \sqrt {g \cos (e+f x)}} \\ & = \frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {\left (d g^2\right ) \int \frac {1}{\sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \, dx}{2 b}+\frac {\left (2 a d g^3\right ) \text {Subst}\left (\int \frac {x^2}{d^2+g^2 x^4} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{b^2 f}-\frac {\left (2 \sqrt {2} \left (a^2-b^2\right ) \left (1-\frac {b}{\sqrt {-a^2+b^2}}\right ) d g^2 \sqrt {\cos (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\left (b-\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {1+\cos (e+f x)}}\right )}{b^2 f \sqrt {g \cos (e+f x)}}-\frac {\left (2 \sqrt {2} \left (a^2-b^2\right ) \left (1+\frac {b}{\sqrt {-a^2+b^2}}\right ) d g^2 \sqrt {\cos (e+f x)}\right ) \text {Subst}\left (\int \frac {1}{\left (\left (b+\sqrt {-a^2+b^2}\right ) d+a x^2\right ) \sqrt {1-\frac {x^4}{d^2}}} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {1+\cos (e+f x)}}\right )}{b^2 f \sqrt {g \cos (e+f x)}} \\ & = -\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {\left (a d g^2\right ) \text {Subst}\left (\int \frac {d-g x^2}{d^2+g^2 x^4} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{b^2 f}+\frac {\left (a d g^2\right ) \text {Subst}\left (\int \frac {d+g x^2}{d^2+g^2 x^4} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{b^2 f}-\frac {\left (d g^2 \sqrt {\sin (2 e+2 f x)}\right ) \int \frac {1}{\sqrt {\sin (2 e+2 f x)}} \, dx}{2 b \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \\ & = -\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {d g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{2 b f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}+\frac {(a d g) \text {Subst}\left (\int \frac {1}{\frac {d}{g}-\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}+x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 b^2 f}+\frac {(a d g) \text {Subst}\left (\int \frac {1}{\frac {d}{g}+\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}+x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 b^2 f}+\frac {\left (a \sqrt {d} g^{3/2}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {d}}{\sqrt {g}}+2 x}{-\frac {d}{g}-\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}-x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 \sqrt {2} b^2 f}+\frac {\left (a \sqrt {d} g^{3/2}\right ) \text {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {d}}{\sqrt {g}}-2 x}{-\frac {d}{g}+\frac {\sqrt {2} \sqrt {d} x}{\sqrt {g}}-x^2} \, dx,x,\frac {\sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}\right )}{2 \sqrt {2} b^2 f} \\ & = -\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {a \sqrt {d} g^{3/2} \log \left (\sqrt {d}-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b^2 f}-\frac {a \sqrt {d} g^{3/2} \log \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b^2 f}+\frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {d g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{2 b f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}+\frac {\left (a \sqrt {d} g^{3/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}-\frac {\left (a \sqrt {d} g^{3/2}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f} \\ & = -\frac {a \sqrt {d} g^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}+\frac {a \sqrt {d} g^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {g \cos (e+f x)}}\right )}{\sqrt {2} b^2 f}-\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b-\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {2 \sqrt {2} \sqrt {-a^2+b^2} \sqrt {d} g^2 \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (-\frac {a}{b+\sqrt {-a^2+b^2}},\arcsin \left (\frac {\sqrt {d \sin (e+f x)}}{\sqrt {d} \sqrt {1+\cos (e+f x)}}\right ),-1\right )}{b^2 f \sqrt {g \cos (e+f x)}}+\frac {a \sqrt {d} g^{3/2} \log \left (\sqrt {d}-\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b^2 f}-\frac {a \sqrt {d} g^{3/2} \log \left (\sqrt {d}+\frac {\sqrt {2} \sqrt {g} \sqrt {d \sin (e+f x)}}{\sqrt {g \cos (e+f x)}}+\sqrt {d} \tan (e+f x)\right )}{2 \sqrt {2} b^2 f}+\frac {g \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}}{b f}-\frac {d g^2 \operatorname {EllipticF}\left (e-\frac {\pi }{4}+f x,2\right ) \sqrt {\sin (2 e+2 f x)}}{2 b f \sqrt {g \cos (e+f x)} \sqrt {d \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 19.69 (sec) , antiderivative size = 601, normalized size of antiderivative = 0.98 \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=-\frac {(g \cos (e+f x))^{5/2} (d \sin (e+f x))^{3/2} \left (a+b \sqrt {\sin ^2(e+f x)}\right ) \left (\frac {2 a \operatorname {AppellF1}\left (\frac {5}{4},\frac {1}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )}{a^2-b^2}+\frac {\left (2 a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )}{-a^2 b+b^3}+\frac {5 \left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \left (a^2+b^2 \left (-2+\cos ^2(e+f x)\right )\right )+\left (-4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+3 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {7}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \sin ^2(e+f x) \left (a^2-b^2 \sin ^2(e+f x)\right )\right )}{b \left (-5 \left (a^2-b^2\right ) \operatorname {AppellF1}\left (\frac {1}{4},\frac {3}{4},1,\frac {5}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+\left (4 b^2 \operatorname {AppellF1}\left (\frac {5}{4},\frac {3}{4},2,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )+3 \left (-a^2+b^2\right ) \operatorname {AppellF1}\left (\frac {5}{4},\frac {7}{4},1,\frac {9}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right )\right ) \cos ^2(e+f x)\right ) \sin ^2(e+f x)^{3/4} \left (a^2-b^2 \sin ^2(e+f x)\right )}\right )}{5 d f g \sin ^2(e+f x)^{3/4} (a+b \sin (e+f x))} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]])/(a + b*Sin[e + f*x]),x]

[Out]

-1/5*((g*Cos[e + f*x])^(5/2)*(d*Sin[e + f*x])^(3/2)*(a + b*Sqrt[Sin[e + f*x]^2])*((2*a*AppellF1[5/4, 1/4, 1, 9
/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])/(a^2 - b^2) + ((2*a^2 - b^2)*AppellF1[5/4, 3/4, 1, 9/4
, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])/(-(a^2*b) + b^3) + (5*(-5*(a^2 - b^2)*AppellF1[1/4, 3/4,
 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*(a^2 + b^2*(-2 + Cos[e + f*x]^2)) + (-4*b^2*Appell
F1[5/4, 3/4, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + 3*(a^2 - b^2)*AppellF1[5/4, 7/4, 1,
9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Sin[e + f*x]^2*(a^2 - b^2*Sin[e + f*x]^2)))/(b*(-5*(a
^2 - b^2)*AppellF1[1/4, 3/4, 1, 5/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + (4*b^2*AppellF1[5/4,
 3/4, 2, 9/4, Cos[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)] + 3*(-a^2 + b^2)*AppellF1[5/4, 7/4, 1, 9/4, C
os[e + f*x]^2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)])*Cos[e + f*x]^2)*(Sin[e + f*x]^2)^(3/4)*(a^2 - b^2*Sin[e + f
*x]^2))))/(d*f*g*(Sin[e + f*x]^2)^(3/4)*(a + b*Sin[e + f*x]))

Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 2844 vs. \(2 (517 ) = 1034\).

Time = 3.07 (sec) , antiderivative size = 2845, normalized size of antiderivative = 4.66

method result size
default \(\text {Expression too large to display}\) \(2845\)

[In]

int((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

1/f*sec(f*x+e)*csc(f*x+e)*(a-b)*(g*cos(f*x+e))^(1/2)*(d*sin(f*x+e))^(1/2)*g*(-(-a^2+b^2)^(1/2)*(-cot(f*x+e)+cs
c(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(
f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b*cos(f*x+e)-(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1
)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^
(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a-(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+
cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2
)^(1/2)-a),1/2*2^(1/2))*b-(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(
-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2
))*b-(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*Elliptic
Pi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^2*cos(f*x+e)+(-cot(f*x+e)+csc(f*x
+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e
)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*b^2*cos(f*x+e)-I*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)
^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(
1/2),1/2-1/2*I,1/2*2^(1/2))*a*cos(f*x+e)+I*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(
f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/
2))*a*cos(f*x+e)+(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+
e)+cot(f*x+e))^(1/2)*EllipticF((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2*2^(1/2))*b+(-a^2+b^2)^(1/2)*EllipticPi((-c
ot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+
1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*a+(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f
*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2
))*a-(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e
))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a-(-cot(f*x+e)+csc
(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f
*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*b^2+(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*
x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2
)+a),1/2*2^(1/2))*b^2-2^(1/2)*(-a^2+b^2)^(1/2)*b*cos(f*x+e)*sin(f*x+e)-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(
1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*cos(f*x+e)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-cot(f*x+e)+csc(f*x+e
)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*a^2+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/
2)-a),1/2*2^(1/2))*cos(f*x+e)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+c
ot(f*x+e))^(1/2)*a^2-(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(
f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*b*
cos(f*x+e)+I*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(-cot(f*x+e)+csc(f*x+e)+1)^(1/
2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*(-a^2+b^2)^(1/2)*a-I*EllipticPi((-cot(f*x+e
)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)
*(-csc(f*x+e)+cot(f*x+e))^(1/2)*(-a^2+b^2)^(1/2)*a-cos(f*x+e)*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2
)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),
a/(-b+(-a^2+b^2)^(1/2)+a),1/2*2^(1/2))*a+cos(f*x+e)*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*
x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticF((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2*2^(1/2)
)*b+cos(f*x+e)*(-a^2+b^2)^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(-cot(f*x+e
)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*a+cos(f*x+e)*(-a^2+b^2)^
(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*Ellipti
cPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*a-cos(f*x+e)*(-a^2+b^2)^(1/2)*(-cot(f*x+e)+csc(f*x
+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*EllipticPi((-cot(f*x+e)+csc(f*x+e
)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*a-EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),a/(-b+(-a^2+b^
2)^(1/2)+a),1/2*2^(1/2))*(-csc(f*x+e)+cot(f*x+e)+1)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*
x+e))^(1/2)*a^2+EllipticPi((-cot(f*x+e)+csc(f*x+e)+1)^(1/2),-a/(b+(-a^2+b^2)^(1/2)-a),1/2*2^(1/2))*(-csc(f*x+e
)+cot(f*x+e)+1)^(1/2)*(-cot(f*x+e)+csc(f*x+e)+1)^(1/2)*(-csc(f*x+e)+cot(f*x+e))^(1/2)*a^2)*2^(1/2)*a/b^2/(-a^2
+b^2)^(1/2)/(-b+(-a^2+b^2)^(1/2)+a)/(b+(-a^2+b^2)^(1/2)-a)

Fricas [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int \frac {\sqrt {d \sin {\left (e + f x \right )}} \left (g \cos {\left (e + f x \right )}\right )^{\frac {3}{2}}}{a + b \sin {\left (e + f x \right )}}\, dx \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(d*sin(f*x+e))**(1/2)/(a+b*sin(f*x+e)),x)

[Out]

Integral(sqrt(d*sin(e + f*x))*(g*cos(e + f*x))**(3/2)/(a + b*sin(e + f*x)), x)

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {d \sin \left (f x + e\right )}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*sqrt(d*sin(f*x + e))/(b*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} \sqrt {d \sin \left (f x + e\right )}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(d*sin(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((g*cos(f*x + e))^(3/2)*sqrt(d*sin(f*x + e))/(b*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} \sqrt {d \sin (e+f x)}}{a+b \sin (e+f x)} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,\sqrt {d\,\sin \left (e+f\,x\right )}}{a+b\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(d*sin(e + f*x))^(1/2))/(a + b*sin(e + f*x)),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(d*sin(e + f*x))^(1/2))/(a + b*sin(e + f*x)), x)